Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

In situ analysis of protein S-glutathionylation in lung tissue using glutaredoxin-1-catalyzed cysteine derivatization.

Identifieur interne : 000B15 ( Main/Exploration ); précédent : 000B14; suivant : 000B16

In situ analysis of protein S-glutathionylation in lung tissue using glutaredoxin-1-catalyzed cysteine derivatization.

Auteurs : Scott W. Aesif [États-Unis] ; Vikas Anathy ; Marije Havermans ; Amy S. Guala ; Karina Ckless ; Douglas J. Taatjes ; Yvonne M W. Janssen-Heininger

Source :

RBID : pubmed:19556513

Descripteurs français

English descriptors

Abstract

Protein S-glutathionylation (PSSG) is a posttranslational modification that involves the conjugation of the small antioxidant molecule glutathione to cysteine residues and is emerging as a critical mechanism of redox-based signaling. PSSG levels increase under conditions of oxidative stress and are controlled by glutaredoxins (Grx) that, under physiological conditions, preferentially deglutathionylate cysteines and restore sulfhydryls. Both the occurrence and distribution of PSSG in tissues is unknown because of the labile nature of this oxidative event and the lack of specific reagents. The goal of this study was to establish and validate a protocol that enables detection of PSSG in situ, using the property of Grx to deglutathionylate cysteines. Using Grx1-catalyzed cysteine derivatization, we evaluated PSSG content in mice subjected to various models of lung injury and fibrosis. In control mice, PSSG was detectable primarily in the airway epithelium and alveolar macrophages. Exposure of mice to NO(2) resulted in enhanced PSSG levels in parenchymal regions, while exposure to O(2) resulted in minor detectable changes. Finally, bleomycin exposure resulted in marked increases in PSSG reactivity both in the bronchial epithelium as well as in parenchymal regions. Taken together, these findings demonstrate that Grx1-based cysteine derivatization is a powerful technique to specifically detect patterns of PSSG expression in lungs, and will enable investigations into regional changes in PSSG content in a variety of diseases.

DOI: 10.2353/ajpath.2009.080736
PubMed: 19556513
PubMed Central: PMC2708792


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">In situ analysis of protein S-glutathionylation in lung tissue using glutaredoxin-1-catalyzed cysteine derivatization.</title>
<author>
<name sortKey="Aesif, Scott W" sort="Aesif, Scott W" uniqKey="Aesif S" first="Scott W" last="Aesif">Scott W. Aesif</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Pathology, University of Vermont College of Medicine, Burlington, VT 05405, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Pathology, University of Vermont College of Medicine, Burlington, VT 05405</wicri:regionArea>
<placeName>
<region type="state">Vermont</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Anathy, Vikas" sort="Anathy, Vikas" uniqKey="Anathy V" first="Vikas" last="Anathy">Vikas Anathy</name>
</author>
<author>
<name sortKey="Havermans, Marije" sort="Havermans, Marije" uniqKey="Havermans M" first="Marije" last="Havermans">Marije Havermans</name>
</author>
<author>
<name sortKey="Guala, Amy S" sort="Guala, Amy S" uniqKey="Guala A" first="Amy S" last="Guala">Amy S. Guala</name>
</author>
<author>
<name sortKey="Ckless, Karina" sort="Ckless, Karina" uniqKey="Ckless K" first="Karina" last="Ckless">Karina Ckless</name>
</author>
<author>
<name sortKey="Taatjes, Douglas J" sort="Taatjes, Douglas J" uniqKey="Taatjes D" first="Douglas J" last="Taatjes">Douglas J. Taatjes</name>
</author>
<author>
<name sortKey="Janssen Heininger, Yvonne M W" sort="Janssen Heininger, Yvonne M W" uniqKey="Janssen Heininger Y" first="Yvonne M W" last="Janssen-Heininger">Yvonne M W. Janssen-Heininger</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2009">2009</date>
<idno type="RBID">pubmed:19556513</idno>
<idno type="pmid">19556513</idno>
<idno type="doi">10.2353/ajpath.2009.080736</idno>
<idno type="pmc">PMC2708792</idno>
<idno type="wicri:Area/Main/Corpus">000A95</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000A95</idno>
<idno type="wicri:Area/Main/Curation">000A95</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000A95</idno>
<idno type="wicri:Area/Main/Exploration">000A95</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">In situ analysis of protein S-glutathionylation in lung tissue using glutaredoxin-1-catalyzed cysteine derivatization.</title>
<author>
<name sortKey="Aesif, Scott W" sort="Aesif, Scott W" uniqKey="Aesif S" first="Scott W" last="Aesif">Scott W. Aesif</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Pathology, University of Vermont College of Medicine, Burlington, VT 05405, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Pathology, University of Vermont College of Medicine, Burlington, VT 05405</wicri:regionArea>
<placeName>
<region type="state">Vermont</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Anathy, Vikas" sort="Anathy, Vikas" uniqKey="Anathy V" first="Vikas" last="Anathy">Vikas Anathy</name>
</author>
<author>
<name sortKey="Havermans, Marije" sort="Havermans, Marije" uniqKey="Havermans M" first="Marije" last="Havermans">Marije Havermans</name>
</author>
<author>
<name sortKey="Guala, Amy S" sort="Guala, Amy S" uniqKey="Guala A" first="Amy S" last="Guala">Amy S. Guala</name>
</author>
<author>
<name sortKey="Ckless, Karina" sort="Ckless, Karina" uniqKey="Ckless K" first="Karina" last="Ckless">Karina Ckless</name>
</author>
<author>
<name sortKey="Taatjes, Douglas J" sort="Taatjes, Douglas J" uniqKey="Taatjes D" first="Douglas J" last="Taatjes">Douglas J. Taatjes</name>
</author>
<author>
<name sortKey="Janssen Heininger, Yvonne M W" sort="Janssen Heininger, Yvonne M W" uniqKey="Janssen Heininger Y" first="Yvonne M W" last="Janssen-Heininger">Yvonne M W. Janssen-Heininger</name>
</author>
</analytic>
<series>
<title level="j">The American journal of pathology</title>
<idno type="eISSN">1525-2191</idno>
<imprint>
<date when="2009" type="published">2009</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Biocatalysis (MeSH)</term>
<term>Cysteine (metabolism)</term>
<term>Glutaredoxins (metabolism)</term>
<term>Glutathione (analysis)</term>
<term>Glutathione (metabolism)</term>
<term>Histocytochemistry (methods)</term>
<term>Lung (chemistry)</term>
<term>Lung (drug effects)</term>
<term>Lung (metabolism)</term>
<term>Lung Diseases (chemically induced)</term>
<term>Lung Diseases (metabolism)</term>
<term>Mice (MeSH)</term>
<term>Mice, Inbred C57BL (MeSH)</term>
<term>Microscopy, Confocal (MeSH)</term>
<term>Microscopy, Fluorescence (methods)</term>
<term>Nitrogen Dioxide (pharmacology)</term>
<term>Oxidants, Photochemical (pharmacology)</term>
<term>Oxidation-Reduction (MeSH)</term>
<term>Oxygen (pharmacology)</term>
<term>Paraffin Embedding (MeSH)</term>
<term>Protein S (analysis)</term>
<term>Protein S (chemistry)</term>
<term>Protein S (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux (MeSH)</term>
<term>Biocatalyse (MeSH)</term>
<term>Cystéine (métabolisme)</term>
<term>Dioxyde d'azote (pharmacologie)</term>
<term>Glutarédoxines (métabolisme)</term>
<term>Glutathion (analyse)</term>
<term>Glutathion (métabolisme)</term>
<term>Histocytochimie (méthodes)</term>
<term>Inclusion en paraffine (MeSH)</term>
<term>Maladies pulmonaires (induit chimiquement)</term>
<term>Maladies pulmonaires (métabolisme)</term>
<term>Microscopie confocale (MeSH)</term>
<term>Microscopie de fluorescence (méthodes)</term>
<term>Oxydants photochimiques (pharmacologie)</term>
<term>Oxydoréduction (MeSH)</term>
<term>Oxygène (pharmacologie)</term>
<term>Poumon (composition chimique)</term>
<term>Poumon (effets des médicaments et des substances chimiques)</term>
<term>Poumon (métabolisme)</term>
<term>Protéine S (analyse)</term>
<term>Protéine S (composition chimique)</term>
<term>Protéine S (métabolisme)</term>
<term>Souris (MeSH)</term>
<term>Souris de lignée C57BL (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analysis" xml:lang="en">
<term>Glutathione</term>
<term>Protein S</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Protein S</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Cysteine</term>
<term>Glutaredoxins</term>
<term>Glutathione</term>
<term>Protein S</term>
</keywords>
<keywords scheme="MESH" qualifier="analyse" xml:lang="fr">
<term>Glutathion</term>
<term>Protéine S</term>
</keywords>
<keywords scheme="MESH" qualifier="chemically induced" xml:lang="en">
<term>Lung Diseases</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Lung</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Poumon</term>
<term>Protéine S</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Lung</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Poumon</term>
</keywords>
<keywords scheme="MESH" qualifier="induit chimiquement" xml:lang="fr">
<term>Maladies pulmonaires</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Lung</term>
<term>Lung Diseases</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Histocytochemistry</term>
<term>Microscopy, Fluorescence</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Cystéine</term>
<term>Glutarédoxines</term>
<term>Glutathion</term>
<term>Maladies pulmonaires</term>
<term>Poumon</term>
<term>Protéine S</term>
</keywords>
<keywords scheme="MESH" qualifier="méthodes" xml:lang="fr">
<term>Histocytochimie</term>
<term>Microscopie de fluorescence</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Dioxyde d'azote</term>
<term>Oxydants photochimiques</term>
<term>Oxygène</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Nitrogen Dioxide</term>
<term>Oxidants, Photochemical</term>
<term>Oxygen</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Biocatalysis</term>
<term>Mice</term>
<term>Mice, Inbred C57BL</term>
<term>Microscopy, Confocal</term>
<term>Oxidation-Reduction</term>
<term>Paraffin Embedding</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Biocatalyse</term>
<term>Inclusion en paraffine</term>
<term>Microscopie confocale</term>
<term>Oxydoréduction</term>
<term>Souris</term>
<term>Souris de lignée C57BL</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Protein S-glutathionylation (PSSG) is a posttranslational modification that involves the conjugation of the small antioxidant molecule glutathione to cysteine residues and is emerging as a critical mechanism of redox-based signaling. PSSG levels increase under conditions of oxidative stress and are controlled by glutaredoxins (Grx) that, under physiological conditions, preferentially deglutathionylate cysteines and restore sulfhydryls. Both the occurrence and distribution of PSSG in tissues is unknown because of the labile nature of this oxidative event and the lack of specific reagents. The goal of this study was to establish and validate a protocol that enables detection of PSSG in situ, using the property of Grx to deglutathionylate cysteines. Using Grx1-catalyzed cysteine derivatization, we evaluated PSSG content in mice subjected to various models of lung injury and fibrosis. In control mice, PSSG was detectable primarily in the airway epithelium and alveolar macrophages. Exposure of mice to NO(2) resulted in enhanced PSSG levels in parenchymal regions, while exposure to O(2) resulted in minor detectable changes. Finally, bleomycin exposure resulted in marked increases in PSSG reactivity both in the bronchial epithelium as well as in parenchymal regions. Taken together, these findings demonstrate that Grx1-based cysteine derivatization is a powerful technique to specifically detect patterns of PSSG expression in lungs, and will enable investigations into regional changes in PSSG content in a variety of diseases.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">19556513</PMID>
<DateCompleted>
<Year>2009</Year>
<Month>07</Month>
<Day>15</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1525-2191</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>175</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2009</Year>
<Month>Jul</Month>
</PubDate>
</JournalIssue>
<Title>The American journal of pathology</Title>
<ISOAbbreviation>Am J Pathol</ISOAbbreviation>
</Journal>
<ArticleTitle>In situ analysis of protein S-glutathionylation in lung tissue using glutaredoxin-1-catalyzed cysteine derivatization.</ArticleTitle>
<Pagination>
<MedlinePgn>36-45</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.2353/ajpath.2009.080736</ELocationID>
<Abstract>
<AbstractText>Protein S-glutathionylation (PSSG) is a posttranslational modification that involves the conjugation of the small antioxidant molecule glutathione to cysteine residues and is emerging as a critical mechanism of redox-based signaling. PSSG levels increase under conditions of oxidative stress and are controlled by glutaredoxins (Grx) that, under physiological conditions, preferentially deglutathionylate cysteines and restore sulfhydryls. Both the occurrence and distribution of PSSG in tissues is unknown because of the labile nature of this oxidative event and the lack of specific reagents. The goal of this study was to establish and validate a protocol that enables detection of PSSG in situ, using the property of Grx to deglutathionylate cysteines. Using Grx1-catalyzed cysteine derivatization, we evaluated PSSG content in mice subjected to various models of lung injury and fibrosis. In control mice, PSSG was detectable primarily in the airway epithelium and alveolar macrophages. Exposure of mice to NO(2) resulted in enhanced PSSG levels in parenchymal regions, while exposure to O(2) resulted in minor detectable changes. Finally, bleomycin exposure resulted in marked increases in PSSG reactivity both in the bronchial epithelium as well as in parenchymal regions. Taken together, these findings demonstrate that Grx1-based cysteine derivatization is a powerful technique to specifically detect patterns of PSSG expression in lungs, and will enable investigations into regional changes in PSSG content in a variety of diseases.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Aesif</LastName>
<ForeName>Scott W</ForeName>
<Initials>SW</Initials>
<AffiliationInfo>
<Affiliation>Department of Pathology, University of Vermont College of Medicine, Burlington, VT 05405, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Anathy</LastName>
<ForeName>Vikas</ForeName>
<Initials>V</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Havermans</LastName>
<ForeName>Marije</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Guala</LastName>
<ForeName>Amy S</ForeName>
<Initials>AS</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ckless</LastName>
<ForeName>Karina</ForeName>
<Initials>K</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Taatjes</LastName>
<ForeName>Douglas J</ForeName>
<Initials>DJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Janssen-Heininger</LastName>
<ForeName>Yvonne M W</ForeName>
<Initials>YM</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R03 HL 095404</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 HL060014</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 HL60014</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 HL079331</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R03 HL095404</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01HL079331</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Am J Pathol</MedlineTA>
<NlmUniqueID>0370502</NlmUniqueID>
<ISSNLinking>0002-9440</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054477">Glutaredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010083">Oxidants, Photochemical</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D017293">Protein S</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>GAN16C9B8O</RegistryNumber>
<NameOfSubstance UI="D005978">Glutathione</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>K848JZ4886</RegistryNumber>
<NameOfSubstance UI="D003545">Cysteine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>S7G510RUBH</RegistryNumber>
<NameOfSubstance UI="D009585">Nitrogen Dioxide</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>S88TT14065</RegistryNumber>
<NameOfSubstance UI="D010100">Oxygen</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>AIM</CitationSubset>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055162" MajorTopicYN="N">Biocatalysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003545" MajorTopicYN="N">Cysteine</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054477" MajorTopicYN="N">Glutaredoxins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005978" MajorTopicYN="N">Glutathione</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="Y">analysis</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006651" MajorTopicYN="N">Histocytochemistry</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008168" MajorTopicYN="N">Lung</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008171" MajorTopicYN="N">Lung Diseases</DescriptorName>
<QualifierName UI="Q000139" MajorTopicYN="N">chemically induced</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008810" MajorTopicYN="N">Mice, Inbred C57BL</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018613" MajorTopicYN="N">Microscopy, Confocal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008856" MajorTopicYN="N">Microscopy, Fluorescence</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009585" MajorTopicYN="N">Nitrogen Dioxide</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010083" MajorTopicYN="N">Oxidants, Photochemical</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="N">Oxidation-Reduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010100" MajorTopicYN="N">Oxygen</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016612" MajorTopicYN="N">Paraffin Embedding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017293" MajorTopicYN="N">Protein S</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="Y">analysis</QualifierName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2009</Year>
<Month>6</Month>
<Day>27</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2009</Year>
<Month>6</Month>
<Day>27</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2009</Year>
<Month>7</Month>
<Day>16</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">19556513</ArticleId>
<ArticleId IdType="pii">S0002-9440(10)60521-4</ArticleId>
<ArticleId IdType="doi">10.2353/ajpath.2009.080736</ArticleId>
<ArticleId IdType="pmc">PMC2708792</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Antioxid Redox Signal. 2004 Feb;6(1):63-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14713336</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Pathol. 2003 Dec;163(6):2555-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14633627</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Invest. 1975 Apr;55(4):794-802</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1120782</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Appl Physiol Respir Environ Exerc Physiol. 1978 Mar;44(3):370-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">632178</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1981;77:373-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7329314</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1982 Apr 25;257(8):4248-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7068633</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Toxicol Environ Health. 1984;13(2-3):301-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6737514</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1986 Jan 25;261(3):996-1001</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3944096</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1992 Nov;119(3):493-501</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1400587</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 1997;23(3):445-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9214581</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 1997 Oct 1;327 ( Pt 1):275-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9355763</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FASEB J. 1999 Sep;13(12):1481-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10463938</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 2005 Mar 1;435(1):42-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15680905</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2005 Mar-Apr;7(3-4):348-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15706083</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Jun 3;280(22):21099-106</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15814611</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2005 Jul-Aug;7(7-8):940-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15998249</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Exp Pathol. 2002 Jun;83(3):111-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12383190</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur Respir J. 2003 Feb;21(2):232-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12608435</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2003 Jun 15;170(12):6257-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12794158</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2005 Jul-Aug;7(7-8):964-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15998251</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Respir Crit Care Med. 2005 Aug 15;172(4):417-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15894605</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2005 Nov 24;353(21):2229-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16306520</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol Lung Cell Mol Physiol. 2006 Jan;290(1):L144-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16085673</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2006 Mar;1760(3):380-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16515838</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Aug 29;103(35):13086-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16916935</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arterioscler Thromb Vasc Biol. 2006 Nov;26(11):2454-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16931794</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Respir Res. 2006;7:133</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17064412</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Respir Cell Mol Biol. 2007 Feb;36(2):147-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16980552</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol Heart Circ Physiol. 2007 Mar;292(3):H1227-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17172268</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Pharmacol. 2007 Aug;7(4):381-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17662654</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteins. 2007 Sep 1;68(4):879-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17546662</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2007 Nov 1;43(9):1299-312</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17893043</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2008 Feb;10(2):355-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17999627</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2008 Jun;5(6):553-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18469822</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2008 Jul 1;45(1):1-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18423411</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gastroenterol Hepatol. 2008 Aug;23(8 Pt 2):e457-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17683488</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Respir Cell Mol Biol. 2009 Apr;40(4):422-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18836136</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomics. 2003 Jul;3(7):1154-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12872216</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Pathol. 2004 Aug;35(8):1000-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15297967</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Vermont</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Anathy, Vikas" sort="Anathy, Vikas" uniqKey="Anathy V" first="Vikas" last="Anathy">Vikas Anathy</name>
<name sortKey="Ckless, Karina" sort="Ckless, Karina" uniqKey="Ckless K" first="Karina" last="Ckless">Karina Ckless</name>
<name sortKey="Guala, Amy S" sort="Guala, Amy S" uniqKey="Guala A" first="Amy S" last="Guala">Amy S. Guala</name>
<name sortKey="Havermans, Marije" sort="Havermans, Marije" uniqKey="Havermans M" first="Marije" last="Havermans">Marije Havermans</name>
<name sortKey="Janssen Heininger, Yvonne M W" sort="Janssen Heininger, Yvonne M W" uniqKey="Janssen Heininger Y" first="Yvonne M W" last="Janssen-Heininger">Yvonne M W. Janssen-Heininger</name>
<name sortKey="Taatjes, Douglas J" sort="Taatjes, Douglas J" uniqKey="Taatjes D" first="Douglas J" last="Taatjes">Douglas J. Taatjes</name>
</noCountry>
<country name="États-Unis">
<region name="Vermont">
<name sortKey="Aesif, Scott W" sort="Aesif, Scott W" uniqKey="Aesif S" first="Scott W" last="Aesif">Scott W. Aesif</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000B15 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000B15 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:19556513
   |texte=   In situ analysis of protein S-glutathionylation in lung tissue using glutaredoxin-1-catalyzed cysteine derivatization.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:19556513" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020